
ARMY RESEARCH LABORATORY

ÄfeBi^^i^Äiä^lS^iä^^ÄiS^^MI^, !

The True Limitations of
Shared Memory Programming

by D. M. Pressel, M. Behr,
and S. Thompson

ARL-TR-2147 January 2000

Approved for public release; distribution is unlimited.

20000211 Oil
"und qmuuanr m&mmü i

The findings in this report are not to be construed as an official
Department of the Army position unless so designated by other
authorized documents.

Citation of manufacturer's or trade names does not constitute an
official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return
it to the originator.

Abstract .

Shared memory parallel computers have the reputation for being the easiest type of parallel
computers to program. At the same time, they are frequently regarded as being the least scalable
type of parallel computer. In particular, shared memory parallel computers are frequently
programmed using a form of loop-level parallelism (usually based on some combination of
compiler directives and automatic parallelization). However, in discussing this form of
parallelism, the experts in the field routinely say that it will not scale past 4-16 processors (the
number varies among experts). This report investigates what the true limitations are to this type
of parallel programming. The discussions are largely based on the experiences that the authors
had in porting the Implicit Computational Fluid Dynamics Code (F3D) to numerous shared
memory systems from SGI, Cray, and Convex.

11

Table of Contents

Page

1. Introduction 1

2. Operating System Constraints 3

3. Hardware Constraints - The Obvious Issues 4

4. Hardware Constraints - The Subtler Points 5

5. The Programming Environment 8

6. The F3D Code 9

7. Results 11

8. Conclusion 13

9. References 15

Glossary 17

Distribution List 19

Report Documentation Page 23

m

INTENTIONALLY LEFT BLANK.

IV

1. Introduction

Shared memory parallel computers are generally regarded as being the easiest type of parallel

computer to program [1]. This statement primarily applies to two types of systems, both of which

are examples of shared memory SMPs:

(1) Multiprocessor vector computers that in general lack caches (e.g., the Cray C90).

(2) Multiprocessor microprocessor-based systems (either RISC or CISC) with coherent memory

systems that include one or more layers of cache.

Additionally, a few companies have produced systems with globally addressable memory, which

they referred to as shared memory. The problem with this is that some of these systems are not cache

coherent. Two of the more notable examples of this approach are the Cray T3D and the Cray T3E.

Since the Cray T3D and T3E support the CRAFT programming model, which uses compiler

directives to implement loop-level parallelism, the combination of the Cray T3D with the CRAFT

model is also discussed.

When discussing high performance computing with people in industry and the government, the

general goal is to obtain high levels of performance. On the other hand, when one of us has

discussed issues related to high performance computing and parallel processing with graduate

students, professors, and researchers in academia, a second point of view has frequently surfaced.

In that point of view, large memory uniprocessors and shared memory systems cost too much.

Therefore, one of their main goals of using parallel processors was to avoid the performance

Note: This work was made possible through a grant of computer time by the Department of Defense (DOD) High
Performance Computing Modernization Program. Additionally, it was funded as part of the Common High
Performance Computing Software Support Initiative administered by the DOD High Performance Computing
Modernization Program.

Note: Definitions for boldface text can be found in the Glossary.

degradation of using out-of-core solvers at a fraction of the cost for traditional large memory

systems. This point of view was expressed both by people involved in creating scalable libraries for

distributed memory architectures using message-passing code and by a graduate student working in

the field of software distributed shared memory.

In this report, we are principally concerned with the achievement of high levels of performance.

Based on experiences at the U.S. Army Research Laboratory (ARL) and elsewhere, it is our belief

that the use of software distributed shared memory (as part of the parallelization strategy) with

modern high performance processors is incompatible with the achievement of high levels of

performance. Therefore, this form of shared memory computing is not discussed.

Experience has shown that the performance obtained from using loop-level parallelism is highly

dependent on a number of factors. The four main factors are:

(1) The size and power of the computer system being used.

(2) The quality of the design and implementation of the computer system (both hardware,

operating system, and programming environment) being used.

(3) The skill of the programmer who parallelizes and tunes the code, and the amount of time and

effort this person is allowed to put into the project.

(4) The size and configuration of the data set (e.g., bigger is better, but usually only if one has

a small number of large zones to work with, rather than a large number of small zones to work with).

Under optimal conditions, we have demonstrated both high levels of performance and moderate

to high levels of speedup when using a 128-processor SGI Origin 2000. For reasons that are

discussed later in this report, most of the other efforts/systems obtained lower levels of performance

and/or speedup, although in many cases, the achieved level of performance was still quite useful and

frequently cost effective.

This report highlights the difficulties associated with producing a highly scalable shared memory

system, since without such systems, loop-level parallelism is not scalable. However, it is important

to remember that many of the less scalable systems are exceedingly well-designed production quality

systems. Furthermore, while the high-end vector-based systems have limited levels of scalability

(16-32 processors), their delivered levels of performance can easily surpass that of a 128-processor

SGI Origin 2000.

2. Operating System Constraints

There are several operating system constraints that limit the usefulness of a shared memory

system and will therefore prevent one from achieving the desired level of performance when using

loop-level parallelism. While some of these may seem to be trivial or obvious considerations, a

large number of current and former systems would fail to meet our performance goals simply

because of these limitations:

• Some systems have too limited an address range for the job's needs. This is partly based on

the requirement to reserve a portion of the address range for each thread's private use. Furthermore,

on many 32-bit systems, fully one-half of the address range is reserved for use solely by the kernel

of the operating system. Finally, there has to be enough space left over to meet the job's other needs.

In contrast, most codes implemented using MPI will not have this problem, since only a portion of

the data needs to reside in each node's memory (remembering that with the message-passing model,

each node executes a separate job with its own address range).

• If the operating system either implements a master-slave policy (as opposed to being an SMP),

or fails to support a sufficiently fine-grained set of locks within the kernel, then it may have trouble

efficiently supporting large numbers of processors. This can be especially troublesome to shared

memory jobs, since they tend to hit synchronization barriers much more frequently than do message-

passing jobs written with distributed memory systems in mind.

• The system must be run in a manner that allows a job using N processors to actually own those

processors. Time sharing a processor is almost always counterproductive.

• The system must provide a programming environment that supports this form of parallelism.

In some cases, these constraints were by themselves sufficient to limit the usefulness of the early

SMPs from SGI, SUN, and others. In fact, it wasn't until mid-1998 that the hardware and the

operating system for the SGI Origin 2000 became sufficiently mature that 128-processor systems

could be used in a production environment.

3. Hardware Constraints - The Obvious Issues

Hardware issues are a bit more complicated and are therefore considered in two separate groups.

Some of the more obvious issues are:

• In general, if the system does not support more than N processors, most jobs have no hope of

seeing speedups in excess of N.

• If the aggregate peak speed of a system does not exceed the estimated requirements to meet

the user's needs (preferably by more than a factor of 2), the system will not be used.

• If the delivered level of performance per processor is a small percentage of peak (e.g.,

1-2%), it is unlikely that there will be enough processors to meet the user's needs. Even if there are

enough processors, it is difficult to see how the system will be cost effective. The net result is that

the system is likely to be abandoned in short order (in fact, it might not even pass acceptance

testing).

• The system must support enough physical memory. Additionally, it must provide the

necessary hardware support for large address spaces.

• Only systems with a reputation for stability (or at least from a vendor with a reputation for

building well-designed and stable supercomputers) are likely to be purchased for use as production

systems.

• The system must be viewed as being affordable. This metric refers to the cost per GFLOPS,

the cost per GB of memory, the maintenance costs, and, maybe most importantly, the cost for a

minimally configured system. This final number was the forte of vendors of mini-supercomputers

(e.g., Convex). When comparing vector-based systems to other classes of systems, it can be very

difficult to properly evaluate these numbers (in part, because they depend on usage policies and what

alternative systems are available). The net result is that frequently non-vector-based systems will

appear to be more cost effective (at least to a degree) than they really are.

If a system fails to pass these tests, then it is unlikely to meet the user's needs.

4. Hardware Constraints - The Subtler Points

Some of the subtler points when it comes to the hardware are:

• The memory system needs to have a high bandwidth, low latency, and a cost that the customer

is willing to pay. Unfortunately, it is difficult to create high-bandwidth, low-latency memory

systems, and such systems are always expensive.

• A common solution to this issue is to use cache in an attempt to dramatically reduce the

memory bandwidth requirements (e.g., by 99%). Unfortunately, this means that the code needs to

be tuned in a manner that is cache friendly (vector-optimized code rarely starts this way, and most

production scientific codes have been optimized for Cray vector processors). Even when the code

has been retuned to be cache friendly (or at least one is willing and able to retune the code to be

cache friendly), a bad cache design may make this job more difficult (or in some cases next to

impossible). In particular, this was our experience when Cray decided to design the Cray T3D and

Cray T3E without any external cache [2].

• Many early attempts to build SMPs were based on designs using either Buses or Cross Bar

Switches. System buses have the disadvantage of not being scalable. Therefore, as one adds

processors to the system (or alternatively increases the performance of the processors), the system

bus will rapidly become a key bottleneck to scalability. As a result, many of these designs supported

limited numbers of processors and/or used multiple buses to support what was at best a moderate

level of processing power. Vector-based SMPs have traditionally used cross bar switches to provide

much higher levels of bandwidth. These switches were then coupled with very low-latency memory

that was arranged in multiple banks to provide exceptional levels of memory bandwidth. Finally,

the very design principles that vector processors are based on lend themselves to tolerating a fair

amount of memory latency. Of course, all of that added expense to these systems, but it was

necessary if the system was to perform well without a cache (something that is frequently of little

value to a vector processor anyway).

• Attempts have been made to create large, scalable shared memory systems using COMA

(KSR1) or NUMA (Convex Exemplar) architectures with long latencies and low bandwidths to the

off-node memory. In general, these efforts have relied on some form of large DRAM-based cache

to keep the requirement for off-node memory accesses to a minimum. Unfortunately, when working

with 3D problems using loop-level parallelism, one is likely to find that some loops are parallelized

in one direction, others in the second direction, and still others in the third direction. If there are

dependencies present (as they were in key loops in the F3D code), it will be nearly impossible to

avoid large-scale data motion (probably multiple times per time step per zone). This will make it

difficult to show high levels of performance on these architectures.

• In the CRAFT model for the T3D, the required solution to the problem of off-node memory

accesses is to redistribute the data. This is equivalent to using a matrix transpose to make all of the

data local to the nodes where they will be processed. This option can also be used on COMA and

NUMA architectures. In fact, it is frequently used on any architecture with a memory hierarchy to

improve the locality of reference. Unfortunately, it can be a very expensive operation to perform,

and therefore its use is frequently minimized. While other approaches can also be used, their value

can vary greatly from system to system.

• Experience with the SGI Origin 2000 indicates that it is possible to create an efficient NUMA

architecture with an acceptable memory latency and bandwidth for off-node accesses.

• When using loop-level parallelism with 3D problems, one may encounter loops with

dependencies in two out of the three directions. Those loops will in general exhibit limited amounts

of parallelism (measured in the tens to the hundreds). This may be insufficient parallelism to take

advantage of highly scalable architectures based on processors that are either weak or excessively

inefficient.

• Since vector processing is a form of instruction level parallelism, attempts to use large

numbers of vector processors in conjunction with loop-level parallelism may run into performance

problems.

The important points here are:

• It has proven difficult to produce a low-cost, highly scalable memory system, without which

one cannot hope to use large numbers of processors (or at least the customer base may be too small

to be viable).

• If the systems require large numbers of processors and/or large vector lengths in order to

achieve high levels of performance, then many candidates for parallelization using loop-level

parallelism will simply lack the necessary parallelism.

5. The Programming Environment

There are at least four ways in which limitations in the programming environment may limit

one's ability to demonstrate high levels of scalability when using loop-level parallelism:

(1) Some systems do not even have any compiler support for this type of parallelism

(alternatively, some vendors who in theory provide support for this form of parallelism have chosen

to de-emphasize this support).

(2) The compiler support might be so heavily based on automatic parallelization and/or on

languages that are so rarely used at most sites that the support is of questionable value.

(3) On some systems, the implementation of loop-level parallelism introduces additional

constraints on the job size, thereby decreasing the value of this support and/or limiting one's ability

to show parallel speedup.

(4) If the normal usage of the system involves time-sharing the processors to any significant

extent, then, at best, the observed level of parallel speedup will be highly variable, and, at worst, it

can actually result in parallel slowdown.

Our experience with the CRAFT programming model on the CRAY T3D illustrates the case of

excessive limitations inherent with the programming environment itself. CRAFT was the proposed

worksharing programming model for the distributed-memory CRAY platforms. Like other loop-

level parallelism approaches, it promised a relatively easy avenue of porting vector codes to the new

generation of CRAY machines—in particular, the T3D. This F77 environment consisted of:

• CDIR$ SHARED compiler directives providing control over data distribution among the

processing elements,

• CDIR$ DO SHARED directives providing control over low-level parallelism, and

• a set of subroutines and intrinsics to perform common data parallel operations such as

reductions and scans.

Unfortunately, along with the ease of use and maintenance came important drawbacks. The

parallel loop dimensions were restricted to powers of 2, leading to wasted memory and complicated

array padding. Restrictions were placed on nesting of shared loops. Most importantly, the model

did not allow almost any control over data access patterns inside of the shared loops, and the

compiler itself had difficulty producing efficient code inside of those loops. The model also

promoted the use of array syntax, which further reduced reuse of the cache. With the syntax different

from the more widely supported High Performance Fortran (HPF) standard and uncompelling

performance, CRAFT did not gain a lot of user support and was eventually placed by CRAY in a

maintenance mode.

6. The F3D Code

Before continuing on with the results that were achieved by applying loop-level parallelism to

the F3D code, there is a brief description of the code and what was done to it. F3D is an implicit

computational fluid dynamics code (finite difference, evolved from the Beam-Warming [3]

linearized block implicit technique) that was originally developed by J. L. Steger for the NASA

Ames Research Center. Subsequent modifications to the code have been made by J. Sahu of the U.S.

Army Research Laboratory [4].*

Originally, this code was written as an out-of-core solver (depending on the availability of a fast

solid-state disk for good performance). The first step in any effort to parallelize this code was

* The original version of the code is called F3D. Since the efforts to parallelize the code resulted in large numbers of
changes, the decision was made to rename the code. The parallelized vector version of the code is now referred to as
F3DZONAL. The other two versions of the code contain additional extensions and are now collectively known as
ZNSFLOW.

therefore to turn it into an in-core solver. However, this step created a few problems. On most Cray

vector processors and smaller RISC-based shared memory systems (e.g., the SGI Power Challenge),

this made the code a memory hog. This was not a big problem if one had a dedicated system, but

in most other cases, it could complicate efforts to schedule these jobs. On distributed memory

systems with small to moderate amounts of memory per node (e.g., the Cray T3D), the problem was

even worse. In general, the memory requirements would set a lower bound on how many processors

could be used. This can be an important limitation for a program with a limited amount of

parallelism.

The original code consists of about 10,000 lines of Fortran 77, split into about 75 subroutines.

Initially, the code was well vectorized but ran poorly on RISC-based processors and, on vector

platforms, ran poorly with automatic compiler parallelization. The effort for the vector platforms

consisted of additional efforts to improve the single processor performance of the code, along with

the insertion of microtasking directives. The directives were inserted in the most time-consuming

subroutines (about 15 of the 75). This involved declaring the variables as either shared or private

and, in some cases, reordering the loops so as to maximize the number of parallel loops.

Additionally, some restructuring of the code was done to improve the parallelizability of the code

(e.g., increasing the amount of work per processor per parallelization directive). This involved

rearranging sections of code and, in a couple of cases, moving a code fragment from one subroutine

to another.

The approach to parallelizing this code for RISC-based platforms was in theory quite similar. In

practice, it was necessary to start this project with a concerted effort to improve the serial efficiency

of the code on this new class of platforms. A number of techniques were used to dramatically reduce

the number of cache misses that missed all the way back to the main memory and to reduce the

Translation Lookaside Buffer (TLB). Furthermore, it was noted that since these processors are not

vector processors, it was in most cases possible to remove optimizations aimed at improving the

vectorizability of the code. In some cases, this allowed us to reduce the cache and TLB miss rates

10

(sometimes quite dramatically). In other cases, it resulted in modest reductions in the number of

floating point operations per time step per grid point. One major benefit of the observation that the

code no longer needed to be vectorizable was that one could now use 100% of the available

parallelism for parallelizing the program. This observation greatly increased the level of

performance that we could achieve on the SGI Origin 2000. Furthermore, it was critical to the

porting of the code to the Cray T3D.

Finally, as we have seen in the previous section, while it was expected that the version of the

code running on the Cray T3D would use compiler directives similar to those used on the vector-

based platforms from Cray and the RISC-based platforms from SGI and Convex, things did not work

out that way. That one of us was able to implement loop-level parallelism using message-passing

code on the Cray T3D and the Cray T3E demonstrates the value of loop-level parallelism. However,

the difficulty of using this approach, and the need to use it in the first place, substantially places in

doubt the validity of Cray Research's frequent claims that the T3D and T3E are shared memory

systems.

7. Results

In addition to the work that we did with F3D, we are aware of work done with a number of other

programs at NASA Ames Research Center and at ARL. A summary of these results are:

• Automatic parallelizing compilers rarely show much speedup on their own. In fact, it is not

uncommon to observe parallel slowdown when going from one to two processors [5],

• Some jobs that make heavy use of Fortran 90 Array syntax show parallel speedup when using

fully automatic parallelization. However, since many serial compilers produce an excessively high

cache miss rate when compiling code written in this manner, the performance of parallel code written

in this manner should be considered suspect.

11

• As indicated in section 5, attempts to use the CRAFT model with the T3D computer produced

exceptionally poor levels of performance (3% of peak). The poor performance was seen across the

board, from parts of F3D that necessitated complex data motion (block tridiagonal solver) to parts

consisting of embarrassingly parallel operations (formation of residuals). A later implementation

of the F3D on CRAY MPPs took advantage of the message-passing (still using the concept of loop-

level parallelism) and performed at a more acceptable 20% of peak. The data motion necessary in

the block tridiagonal solver and other sections of the code are now performed explicitly, providing

more opportunities to store intermediate results and to aggregate sends and receives, resulting in

much reduced communication overhead. The remaining communication-free portions of the code

bear a strong resemblance to scalar RISC counterparts, and optimization lessons learned there can

be applied. The message-passing version is based on the MPI standard and can also take advantage

of the low-latency SHMEM communication library, available on CRAY MPPs and SGI SMPs.

While the resulting code is portable across a wide range of machines (CRAY, SGI, IBM SP, and Sun

HPC), a major effort was needed to insert explicit communication mechanisms, making this

approach impractical in some production environments.

• The combination of using automatic parallelization with compiler directives (e.g., C$doacross)

will in general produce better levels of performance than when using automatic parallelization on

its own. However, the actual levels of speedup achieved are highly dependent on the level of manual

tuning and do not always show much benefit past 16 processors (results from runs performed on SGI

Origin 2000s) [5,6].

• On a J932/16, the original code ran with a speedup of 3.19 when using 15 CPUs and automatic

parallelization. The optimized version of the code with its microtasking directives ran 12.22 times

faster on 15 CPUs than it did on one CPU. So the optimization effort resulted in the code running

four times faster than the original code with automatic parallelization.

• On a Cray T90, the optimized code ran 1,800 time steps of a 1 million grid point test case in

12,720 s on one CPU. When using four CPUs, the same test case ran in 4,656 s (the system was not

12

dedicated). This is a speedup of 2.7. Presumably, larger problems would perform even better;

however, memory constraints limit the range of problem sizes that can be run within core solvers on

the Cray T90.

• Attempts to use loop-level parallelism primarily/solely based on compiler directives (with

heavy emphasis on code tuning for both serial and parallel performance) have consistently shown

good results on SGI Origin 2000s. Depending on the choice of problem, problem size, and system

size, at least three separate groups of researchers have reported speedups ranging from 10 to 80.

Efforts involving systems from Convex as well as older systems from SGI usually were not as

successful [5,7-9].

• James Taft of NASA Ames Research Center/MRJ Technology Solutions Inc. has developed

a new approach for using multiple levels of loop-level parallelism combined with extra code to

perform load balancing. He has been reporting very favorable results when using this approach on

large SGI Origin 2000s.

8. Conclusion

Achieving highly scalable results when using loop-level parallelism is possible. Having said

this, we now note that when starting a new project, one should not assume that one will

automatically achieve highly scalable results. Achieving this goal requires a well-designed and

implemented computer system (including the operating system and programming environment).

Additionally, it requires a significant commitment on the part of the programmer to do it right. By

this, we mean do the serial and parallel tuning and do not expect the compiler to do more than a

limited amount of the work for the programmer.

13

INTENTIONALLY LEFT BLANK.

14

9. References

1. Dowd, K., and C. Severance. High Performance Computing: RISC Architectures, Optimization
& Benchmarks 2nd Edition. Sebastopol, CA: O'Reily & Associates, Inc., 1998.

2. O'Neal, D., and J. Urbanic. "On Performance and Efficiency: Cray Architectures."
http://www.psc.edu/~oneal/eff/eff.html, Parallel Applications Group, Pittsburgh Supercomputing
Center, August 1997.

3. Pulliam, T., and J. Steger. "On Implicit Finite-Difference Simulations of Three-Dimensional
How." AIAA Journal, vol. 18, pp. 159-167,1992.

4. Sahu, J., and J. L. Steger. "Numerical Simulation of Transonic Flows." International journal
for Numerical Methods in Fluids, vol. 10, no. 8,1990, pp. 855-873.

5. Frumking, M., M. Hribar, H. Jin, A. Waheed, and J. Yan. "A Comparison of Automatic
Parallelization Tools/Compilers on the SGI Origin 2000." Proceedings for SC98, ACM,
November 1998.

6. Hisley, D. M., G. Agrawal, and L. Pollock. "Performance Studies of the Parallelization of a CFD
Solver on the Origin 2000." Proceedings for the 21st Army Science Conference, June 1998.

7. Pressel, D. M., W. B. Sturek, J. Sahu, and K. R. Heavey. "How Moderate-Sized RISC-Based
SMPs Can Outperform Much Larger Distributed Memory MPPs." To be published in the
conference proceedings for the 1999 Advanced Simulation Technologies Conference, San Diego,
CA, sponsored by The Society for Computer Simulation International (SCS), 11-15 April 1999.

8. Saini, S. (editor). NAS Parallel Benchmarks. NPB 1 Data, Electronically published at
http://science.nas.nasa.gov/Software/NPB/NPBlResults/index.html, 17 November 1996.

9. Pressel, D. M. "Results From the Porting of the Computational Fluid Dynamics Code F3D to
the Convex Exemplar CSPP-1000 and SPP-1600." ARL-TR-1923, U.S. Army Research
Laboratory, Aberdeen Proving Ground, MD, March 1999.

15

INTENHONALLY LEFT BLANK.

16

Glossary

CFD

CISC

COMA

GB

GFLOPS

High Level Languages

HPF

Low Level Languages

MPP

NASA

NUMA

RISC

SMP

Computational Fluid Dynamics

Complicated Instruction Set Computer, an approach to processor design
that assumes that the best way to get good performance out of a system
is to provide instructions that are designed to implement key constructs
(e.g., loops) from high level languages.

Cache Only Memory Architecture

Billion Bytes

Billion floating point operations per second

Computer languages that are designed to be relatively easy for the
programmer to read and write. Examples of this type of language are
Fortran, Cobol, C, etc.

High Performance Fortran

Computer languages that are designed to reflect the actual instruction set
of a particular computer, hi general, the lowest level language is known
as Machine Code. Just slightly above machine code is a family of
languages collectively known as Assembly Code.

Massively Parallel Processor

National Aeronautics and Space Administration

Non Uniform Memory Access

Reduced Instruction Set Computer, an approach to processor design that
argues that the best way to get good performance out of a system is to
eliminate the Micro Code that CISC systems use to implement most of
their instructions. Instead, all of the instructions will be directly
implemented in hardware. This places obvious limits on the complexity
of the instruction set, which is why the complexity had to be reduced.

Symmetric Multiprocessor

17

INTENTIONALLY LEFT BLANK.

18

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

2 DEFENSE TECHNICAL 1 DIRECTOR
INFORMATION CENTER US ARMY RESEARCH LAB
DTICDDA AMSRLDD
8725 JOHN J KINGMAN RD 2800 POWDER MILL RD
STE0944 ADELPHI MD 20783-1197
FT BELVOIR VA 22060-6218

1 DIRECTOR
1 HQDA US ARMY RESEARCH LAB

DAMOFDQ AMSRL CS AS (RECORDS MGMT)
D SCHMIDT 2800 POWDER MILL RD
400 ARMY PENTAGON ADELPHI MD 20783-1145
WASHINGTON DC 20310-0460

3 DIRECTOR
1 OSD US ARMY RESEARCH LAB

OUSD(A&T)/ODDDR&E(R) AMSRL CILL
RJTREW 2800 POWDER MILL RD
THE PENTAGON ADELPHI MD 20783-1145
WASHINGTON DC 20301-7100

1 DPTYCGFORRDA
US ARMY MATERIEL CMD

ABERDEEN PROVING GROUND

AMCRDA 4 DIRUSARL
5001 EISENHOWER AVE AMSRL CILP (BLDG 305)
ALEXANDRIA VA 22333-0001

1 INST FOR ADVNCD TCHNLGY
THE UNIV OF TEXAS AT AUSTIN
PO BOX 202797
AUSTIN TX 78720-2797

1 DARPA
B KASPAR
3701 N FAIRFAX DR
ARLINGTON VA 22203-1714

1 NAVAL SURFACE WARFARE CTR
CODE B07 J PENNELLA
17320 DAHLGREN RD
BLDG 1470 RM 1101
DAHLGREN VA 22448-5100

1 US MILITARY ACADEMY
MATH SCI CTR OF EXCELLENCE
DEPT OF MATHEMATICAL SCI
MADNMATH
THAYERHALL
WEST POINT NY 10996-1786

19

NO. OF
COPIES

1

ORGANIZATION

PM CHSSI
JOHN GROSH
SUITE 510
1010 N GLEBE ROAD
ARLINGTON VA 22201

RICE UNIVERSITY
MCHNCL ENGRNG AND MTRLS SCI
MAREKBEHR
MS 321
6100 MAIN STREET
HOUSTINTX 77005

COMMANDER
CODE C2892
CLINT HOUSH
1 ADMINISTRATION CIR
CHINA LAKE CA 93555

WLFIMC
STEPHEN SCHERR
BILL STRANG
BLDG 450
2645 FIFTH ST SUITE 7
WPAFB OH 45433-7913

NSWC
ABWARDLAW
CODE B44
SILVER SPRING MD 20903-5640

NAVAL RSRCH LAB
CODE 6400 JAY BORIS
4555 OVERLOOK AVE SW
WASHINGTON DC 20375-5344

NAVAL RSRCH LAB
CODE 6410
RAVIRAMAMURTI
WASHINGTON DC 20375-5344

ARMY AEROFLIGHT
DYNAMICS DIRECTORATE
ROBERT MEAKIN
MS 258 1
MOFFETT FIELD CA 94035-1000

NAVAL RSRCH LAB
CODE 7320
JW MCCAFFREY JR
HEAD OCEAN DYNAMICS AND
PREDICTION BRANCH
STENNIS SPACE CENTER MS 39529

NO. OF
COPIES ORGANIZATION

1 NAVAL RSRCH LAB
GEORGE HEBURN
RSRCH OCEANOGRAPHER CNMOC
BLDG 1020 RM 178
STENNIS SPACE CENTER MS 39529

1 US AIR FORCE WRIGHT LAB
WL FIM JOSEPH J S SHANG
2645 FIFTH STREET STE 6
WPAFB OH 45433-7912

1 USAF PHILIPS LAB
OLACPLRKFE
CPT SCOTT G WIERSCHKE
10 EAST SATURN BLVD
EDWARDS AFB CA 93524-7680

1 USAE WATERWAYS
EXPERIMENT STATION
CEWES HV C JEFFREY P HOLLAND
3909 HALLS FERRY ROAD
VICKSBURG MS 39180-6199

1 US ARMY CECOM RD&E CTR
AMSEL RDC2
BARRY S PERLMAN
FT MONMOUTH NJ 07703

1 SPAWARSYSCEN (D4402)
ROBERT A WASILAUSKY
BLDG 33 RM 0071A
53560 HULL ST
SAN DIEGO CA 92152-5001

1 US AIR FORCE RESEARCH LAB
INFORMATION DIRECTORATE
RICHARD W LINDERMAN
26 ELECTRONIC PARKWAY
ROME NY 13441-4514

1 US AIR FORCE RESEARCH LAB
PROPULSION DIRECTORATE
LESLIE PERKINS
5 POLLUX DR
EDWARDS AFB CA 93524-7048

1 AIR FORCE RESEARCH LAB/DEHE
ROBERT PETERKIN
3550 ABERDEEN AVE SE
KJHTLAND AFB NM 87117-5776

20

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

1 SPACE & NAVAL WARFARE SYS CTR ABERDEEN PROVING GROUND
' CODE D7305 KEITH BROMLEY

BLDG 606 RM 325 15 DIRUSARL
53140 SYSTEMS ST AMSRLCI

* SAN DIEGO CA 92152-5001 NRADHAKRISHNAN
AMSRLCI H

1 UNVRSTY OF MINNESOTA C NIETUBICZ
DEPT OF ASTRONOMY AMSRL CI HA
PROF P WOODWARD WSTUREK
356 PHYSICS BLDG AMARK
116 CHURCH STREET SE RNAMBURU
MINNEAPOLIS MN 55455 AMSRL CI HC

D PRESSEL
1 RICE UNIVERSITY D HISLEY

MCHNCL ENGRNG AND MTRLS SCI CZOLTANI
TAYFUN TEZDUYAR DEPT CHRMN APRESSLEY
MS 321 6100 MAIN ST TKENDALL
HOUSTON TX 77005 PDYKSTRA

AMSRL WMBC
1 DIRECTOR HEDGE

ARMY HIGH PERFORMANCE JSAHU
COMPUTING RSRCH CTR KHEAVEY
BARBARA BRYAN P WEINACHT
1200 WASHINGTON AVE
SOUTH MINNEAPOLIS MN 55415

1 DIRECTOR
ARMY HIGH PERFORMANCE
COMPUTING RSRCH CTR
GRAHAM V CANDLER
1200 WASHINGTON AVE
SOUTH MINNEAPOLIS MN 55415

1 NAVAL CMND CONTROL AND
OCEAN SURVEILLANCE CTR
L PARNELL HPC CRDNTR & DIR
NCCOSC RDTE DIV D3603
49590 LASSING ROAD
SAN DIEGO CA 92152-6148

21

INTENTIONALLY LEFT BLANK.

22

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0133

Public reporting burden tor this collodion of Information Is estimated to average 1 hour per response, Including the tin» lor reviewing Instruction», »arching eawng*2»*S?
gathering and maintaining the data needed, and completing and reviewing the collection of Information. Send comments regarding thlaburdensstlmete w ™»^ «^ "'™"
collection of Information, Including suggestion, for reducing this burden, to Washington Headquarter» Service», Dlreetoratefor ■^nM^OparMm «a «•£»*1215 J«"«"»"
O.VI, Hinhwiw. Suit, .** «mnaton. VA »Mg-tto;. and to the Office of Management and Büttel. PnnerwpiH Riff «torI^MWWMM). ™1llialtll, PS »5»,
1 AGENCY IUSEONLY (Lerne blank) 2. REPORT DATE [3. REPORT TYPE AND DATES COVERED

January 2000 Final, Jan 96 - Dec 96
4. TITLE AND SUBTITLE

The True Limitations of Shared Memory Programming

6. AUTHOR(S)

D. M. Pressel, M. Behr,* and S. Thompson*

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: AMSRL-CI-HC
Aberdeen Proving Ground, MD 21005-5067

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES)

5. FUNDING NUMBERS

9UHMCL

8. PERFORMING ORGANIZATION
REPORT NUMBER

ARL-TR-2147

10.SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

♦University of Minnesota, 1100 Washington Avenue, Minneapolis, MN 55415
**Raytheon Systems Company, 939-1 Beards Hill Road, Suite 191, Aberdeen, MD 21001

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Shared memory parallel computers have the reputation for being the easiest type of parallel computers to program. At
the same time, they are frequently regarded as being the least scalable type of parallel computer. In particular, shared
memory parallel computers are frequently programmed using a form of loop-level parallelism (usually based on some
combination of compiler directives and automatic parallelization). However, in discussing this form of parallelism, the
experts in the field routinely say that it will not scale past 4-16 processors (the number varies among experts). This
report investigates what the true limitations are to this type of parallel programming. The discussions are largely based
on the experiences that the authors had in porting the Implicit Computational Fluid Dynamics Code (F3D) to numerous
shared memory systems from SGI, Cray, and Convex.

14. SUBJECT TERMS

supercomputer, high performance computing, parallel programming,
symmetric multiprocessors

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

22
16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 23
Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

INTENTIONALLY LEFT BLANK.

24

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers
to the items/questions below will aid us in our efforts.

1. ARL Report Number/Author ARL-TR-2147 (Tressel) Date of Report January 2000 ,

2. Date Report Received

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will

be used.)

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.).

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs

avoided, or efficiencies achieved, etc? If so, please elaborate. .

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization,

technical content, format, etc.) —

Organization

CURRENT Name E-mail Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the Old

or Incorrect address below.

Organization

OLD Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)

DEPARTMENT OF THE ARMY

OFFICIAL BUSINESS

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 0001,APG,MD

POSTAGEWILL BE PAID BY ADDRESSEE

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTNAMSRLCIHC
ABERDEEN PROVING GROUND MD 21005-5067

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

